A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic Nitinol tube.
نویسندگان
چکیده
Several key fracture-mechanics parameters associated with the onset of subcritical and critical cracking, specifically the fracture toughness, crack-resistance curve, and fatigue threshold, have recently been reported for the superelastic alloy Nitinol, in the product form of the thin-walled tube that is used to manufacture several biomedical devices, most notably endovascular stents. In this study, we use these critical parameters to construct simple decision criteria for assessing the quantitative effect of crack-like defects in such Nitinol devices with respect to their resistance to failure by deformation or fracture. The criteria are based on the (equivalent) crack-initiation fracture toughness and fatigue threshold stress-intensity range, together with the general yield strength and fatigue endurance strength, and are used to construct a basis for design against single-event (overload) failures as well as for time-/cycle-delayed failures associated with fatigue.
منابع مشابه
Fatigue-crack growth properties of thin-walled superelastic austenitic Nitinol tube for endovascular stents.
Over the past 10 years, the supereleastic nickel-titanium alloy Nitinol has found widespread application in the manufacture of small-scale biomedical devices, such as self-expanding endovascular stents. Although conventional stress/strain-life (S/N) analyses are invariably used as the primary method for design against fatigue loading and for predicting safe lifetimes, fracture mechanics-based m...
متن کاملIn vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects.
Endovascular stents made of the superelastic nickel-titanium alloy Nitinol are subjected in service to tens of millions of loading cycles and even "single-event" overloads, both of which can potentially result in fracture and/or complete failure of the device. A fracture-mechanics-based methodology can provide a means to quantify relevant material parameters critical to the design against such ...
متن کاملEvolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: A fracture mechanics and synchrotron X-ray microdiffraction analysis
The ultrahigh spatial resolution ( 1 lm) of synchrotron X-ray microdiffraction is combined with fracture mechanics techniques to directly measure in situ three-dimensional strains, phases and crystallographic alignment ahead of a growing fatigue crack (100 cycles in situ) in superelastic Nitinol. The results provide some surprising insights into the growth of cracks in phase-transforming materi...
متن کاملAn equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices.
Medical devices, particularly endovascular stents, manufactured from superelastic Nitinol, a near-equiatomic alloy of Ni and Ti, are subjected to complex mixed-mode loading conditions in vivo, including axial tension and compression, radial compression, pulsatile, bending and torsion. Fatigue lifetime prediction methodologies for Nitinol, however, are invariably based on uniaxial loading and th...
متن کاملAn equivalent strain/CoffineManson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices
Medical devices, particularly endovascular stents, manufactured from superelastic Nitinol, a nearequiatomic alloy of Ni and Ti, are subjected to complex mixed-mode loading conditions in vivo, including axial tension and compression, radial compression, pulsatile, bending and torsion. Fatigue lifetime prediction methodologies for Nitinol, however, are invariably based on uniaxial loading and thu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part B, Applied biomaterials
دوره 84 1 شماره
صفحات -
تاریخ انتشار 2008